19 - 28

Some New Characterizations of Upper/Lower Almost Nearly Quasicontinous Multifunctions

Mihai Brescan^{*}, Valeriu Popa^{**}

* Universitatea Petrol-Gaze din Ploiești, Bd. București 39, Ploiești, Catedra de Matematică e-mail: mate@upg-ploiesti.ro

** Universitatea din Bacău, Str. Spiru Haret nr.8, 600114, Bacău, Catedra de Matematică e-mail: vpopa@ub.ro

Abstract

The paper [26] introduces Rychlewich's notion of upper/lower almost nearly quasicontinous multifunction as a generalization of upper/lower almost quasicontinous multifunction [25] and upper/lower nearly continuous multifunctions [9]. The purpose of our paper ist o obtain new theorems of characterization for upper/lower almost nearly quasicontinuous multifunctions.

Key words: multifunctions, upper/lower nearly quasicontinuity

Introduction

The notion of N-closed set is introduced in [6]. The notion of N-continuous function is introduced in [14] and studied in [19, 23] and other papers. Recently, Ekici [8] introduced and studied upper/lower nearly continuous multifunctions as a generalization of upper/lower continuous multifunctions. Also, Ekici introduced the notions of upper/lower almost nearly continuous multifunctions as a generalization of upper/lower almost continuous multifunctions as a generalization of upper/lower almost continuous multifunctions [24] and upper/lower nearly continuous multifunctions.

Quite recently, Rychlewicz [26] introduced the notions of upper/lower almost nearly quasicontinuous multifunctions as a generalization of upper/lower almost quasicontinuous multifunctions [25] and upper/lower nearly continuous multifunctions [9].

In this paper we obtain further characterizations of upper/lower almost nearly quasicontinuous multifunctions.

Preliminaries

Let (X, τ) be a topological space and A a subset of X.

The closure of A and the interior of A are denoted by $C\ell(A)$ and Int(A), respectively. The subset A of (X, τ) is said to be regular open (resp. Regular colsed) if $A = Int(C\ell(A))$ (resp. $A = C\ell(Int(A))$).

Definition 1. The subset A is called N-closed (relative to X) if every cover of A by regular open sets of X has a finite subfamily whose union covers A/6/A point $x \in X$ is called a δ -cluster point [27] of a subset A if $Jnt(C\ell(U)) \cap A \neq \phi$ for every open U of X containing x. The set of all δ -cluster points of A is called the δ -closure of A and is denoted by $C\ell_{\delta}(A)$. If $A = C\ell_{\delta}(A)$ then A is said to be δ -closed [27].

The complement of a δ -closed set is said to be δ -open.

The union of all δ -open set contained in A is called the δ -interior of A and is denoted by $\operatorname{Int}_{\delta}(A)$.

It is shown in [27] that $C\ell_{\delta}(\cup) = C\ell(\cup)$ for every open set U of X and $C\ell_{\delta}(B)$ is closed for every subset B of X.

Definition 2. The subset A of a topological space is said to be semi-open [13] (resp. preopen [15], α -open [17], b-open [14], β -open [1] or semi-preopen [31] if

 $A \subset C\ell(Jnt(A)) (resp. A \subset Jnt(C\ell(A)), A \subset Jnt(C\ell(A))),$ $A \subset (C\ell(A)) \cup C\ell(Jnt(A)), A \subset C\ell(Jnt(C\ell(A))).$

The family of all semi-open sets of *X* is denoted by SO(X).

The family of all semi-open sets of *X* contained $x \in X$ is denoted by SO(X,x).

Definition 3. The complement of a semi-open (resp. preopen, α -open, b-open, β -open) set is said to be semi-closed [7] (resp. preclosed [15], α -closed [16], b-closed [4], β -closed [1]).

Definition 4. The intersection of all semi-closed (resp. preclosed, α -closed, b-closed, β -closed) sets of X containing A is called the semi-closure [7] (resp. preclosure[10], α -closure [16], b-closure[4], β -closure[2] of A and is denoted by SC ℓ (A) (resp. pC ℓ (A), $\alpha C \ell$ (A), bC ℓ (A), $\beta C \ell$ (A)).

Definition 5. The union of all semi-open (resp. preopen, α -open, b-open, β -open) sets of X contained in A is called the semi-interior (resp. preinterior, α -nterior, b-interior, β -interior) of A and is denoted by

SInt(A) (resp. $pInt(A), \alpha Int(A), \beta Int(A), \beta Int(A)$). The following lemma is a generalization of Lemma 1 [26].

Lema 1. Let V be any preopen set of X having N-closed complement; then $Int(C\ell(V))$ is a regular open set having N-closed complement.

Proof. Since *V* have *N*-closed complement, then X - V is *N*-closed and X- $Int(C\ell(V)) \subset X - V$. Let $D = \{D_i : i \in I\}$ be a regular open cover of X- $Int(C\ell(V))$. Then $D \cup Int(C\ell(V))$ is a regular open cover of X - V.

Since X - V is N-closed there exists a finite I_0 such that $\{D_i: i \in I_0\} \cup \mathcal{J}nt(\mathcal{C}\ell(V))$ is a regular open cover of $X - V \supset X - \mathcal{J}nt(\mathcal{C}\ell(V))$

Hence $D' = \{D_i: i \in I_0\}$ is a regular open cover of X- $Jnt(C\ell(V))$, hence $Jnt(C\ell(V))$ have N - closed complement.

The following basis properties of semi-closure and semi-interior are useful in the sequel:

Lema 2. Let *A* be a subset of a topological space (X,τ) .

The following holds for the semi-interior and semi-closure of A:

(1) *A* is semi-closed if and only if $A = sC\ell(A)$;

(2) A is semi-open if and only if A = sJnt(A);

(3) $sC\ell(-A) = X - sJnt(A)$, $sJnt(X_A) = X - sC\ell(A)$.

Definition 6. A function $f: (X, \tau) \to (Y, \sigma)$ is *N*-continuous at a point $x \in X$ [14] if for each open set V of Y containing f(x) and having N-closed complement, there is an open set U containing x such that $f(U) \subset V$. The function $f: (X, \tau) \to (Y, \sigma)$ is N-continuous if it has this property at each point $x \in X$.

Throughout the present paper (X, τ) and (Y, σ) always denote topological spaces and $F: (X, \tau) \to (Y, \sigma)$ presents a multivalued function. For a multifunction $F: X \to Y$, we shall denote the upper and lower inverse of a set *B* of Y by $F^+(B)$ and $F^-(B)$, respectively, that is $F^+(B) = \{x \in X: F(x) \cap B \neq \phi\}$.

Definition 7. A multifunction $F: (X, \tau) \rightarrow (Y, \sigma)$ is said to be:

- a. Upper nearly continuous [8] (resp. upper almost nearly continuous [9]) at $x \in X$ if for each open set V containing F(x) and having N-closed complement, there exists an open set U containing x such that $F(U) \subset V(\text{resp. } F(U) \subset Jnt(C\ell(V)) = sC\ell(V);$
- b. Lower nearly continuous [8] (resp. lower almost nearly continuous [9] at $x \in X$ if for each open set V which intersects F(x) and having N-closed complement, there exists on open set U containing x such that $F(u) \cap V \neq \phi$ (resp. $F(u) \cap Jnt(C\ell(V)) \neq \phi$) for every $u \in U$;
- c. upper/lower nearly continuous (resp. upper/lower almost nearly continuous) if it has this property at each point $x \in X$.

Definition 8. A multifunction $F: (X, \tau) \rightarrow (Y, \sigma)$ is said to be

- a. upper almost quasi-continuous [25] (resp. upper almost nearly quasi continuous [26] at $x \in X$ if for each open set U containing x and for each open set V (resp. for each open set V having N-closed complement) containing F(x), there exists an nonempty open set G of X such that $G \subset U$ and $F(G) \subset Jnt(C\ell(V) = sC\ell(V);$
- b. lower almost quasi-continuous [25] (resp. lower almost nearly quasi-continuous) at $x \in X$ if for each open set *V* (resp. for each open set *V* having *N*-closed complement) wich intersects F(x), there exists a nonempty open set $G \subset U$ and $F(g) \cap Jnt(C\ell(V) \neq \phi)$ for each $g \in G$;
- c. upper/lower almost quasi-continuous (resp. upper/lower almost nearly quasi-continuous) if it has this property at each $x \in X$.

Theorem 1 [26]. For a multifunction $F: (X, \tau) \to (Y, \sigma)$ the following properties are equivalent:

- (1) F is u.a.n.c.;
- (2) For any x ∈ X and for any regular open set G of Y having N-closed complement such that F(x) ⊂G and for any open set U containing F(x), there exists a nonempty open set WU such that F(W) ⊂ G;
- (3) For any $x \in X$ and for any open set G of Y having connected complement such that $F(x) \subset G$, there exists a semi-open set U containing x such that $F(U) \subset Jnt(C\ell(G))$;
- (4) $F^+(G)$ is a semi-open set for any regular open set G of Y having N-closed complement;
- (5) $F^{-}(K)$ is semi-closed set for any regular closed N-closed set K of Y.

Theorem 2 [26]. For a multifunction $F: (X, \tau) \to (Y, \sigma)$ the following properties are equivalent:

- (1) F is l.a.n.c.;
- (2) For any x ∈ X and for any regular open set G of Y meeting F(x) and having N-closed complement and for any open set U containing x, there exists a non-empty open set W of X such that W⊂U and F(W) ∩G≠ φ;
- (3) For any x ∈ X and for any open set V of Y having N-closed complement such that F(x) ∩V≠ φ, there exists a semi-open set U containing x such that F(u) ∩ Jnt(Cℓ(V)) ≠ φ for every u∈ U;
- (4) $F^{-}(G)$ is a semi-open set for any regularly open set G of Y having N-closed complement;
- (5) $F^+(K)$ is a semi-closed set for any regularly closed N-closed set K of Y.

By Definitions 6, 7 and Theorems 1 and 2 we have u.a.c. \Rightarrow u.a.q.c. \Rightarrow ; l.a.c \Rightarrow l.a.q.c \Rightarrow l.a.n.q.c. u.n.c. \Rightarrow u.a.n.c. \Rightarrow u.a.n.q.c.; l.n.c. \Rightarrow l.a.n.q.c.

Characterizations

Theorem 3. For a multifunction $F: (X, \tau) \to (Y, \sigma)$ the following properties are equivalent:

- (1) F is u.a.n.q.c.;
- (2) $F^+(V) \subset s \operatorname{Jnt}(F^+(sC\ell(V))) = s\operatorname{Jnt}(F^+(\operatorname{Jnt}(C\ell(V))))$ for every open V having N-closed complement;
- (3) $sC\ell(F^{-}(C\ell(Jnt(K)))) \subset F^{-}(K)$ for every closed N-closed set K of Y;
- (4) $sC\ell(F^-(C\ell(\mathcal{J}nt(C\ell(B)))) \subset F^-(C\ell(B))$ for every subset B of Y having N-closed closure;
- (5) $\mathcal{J}nt(\mathcal{C}\ell(F^{-}(\mathcal{C}\ell(\mathcal{J}nt(K)))) \subset F^{-}(K)$ for every closed N-closed set K of Y;
- (6) $F^+(V) \subset C\ell(Jnt(F^+(sC\ell(V))))$ for every open set V of Y having N-closed complement.

Proof. (1) \Rightarrow (2). Let V be any open set Y having N-closed complement and $x \in F^+(V)$; then $F(x) \subset V \subset s\mathcal{C}\ell(V)$ and hence $x \notin X^-F^+(s\mathcal{C}\ell(V))$.

By Lemma 2, $sC\ell(V)$ is a regular open set having N-closed complement and Y-s(V) is a regular closed N-closed in Y.

By Theorem 2(5), $F^{-}(Y - sC\ell(V))$ is a semi-closed set in X. Therefore, we obtain

$x \in F^+(sC\ell(V)) \in SO(X)$

and hence $x \in s \mathcal{J}nt(F^+(s\mathcal{C}\ell(V)))$. Consequently $F^+(V) \subset s \mathcal{J}nt(F^+(s\mathcal{C}\ell(V)))$.

(2) \Rightarrow (3). Let *K* be any closed *N*-closed set of *Y*.

Then Y-K is open having N-closed complement. Then we have

$$\begin{aligned} X-F^{-}(K) &= F^{+}(Y-K) \subset s \mathcal{J}nt(F^{+}(s\mathcal{C}\ell(Y-K))) = s \mathcal{J}nt(F^{+}\mathcal{J}nt(\mathcal{C}\ell(Y-K))) = s \mathcal{J}nt(Y-\mathcal{C}\ell(\mathcal{J}nt(K))) = s \mathcal{J}nt(X-F^{-}(\mathcal{C}\ell(\mathcal{J}nt(K))) = X-s\mathcal{C}\ell(F^{-}(\mathcal{C}\ell(\mathcal{J}nt(K)))). \end{aligned}$$

Therefore we obtain

 $sC\ell(F^{-}(C\ell(Jnt(K)))) \subset F^{-}(K).$

(3) \Rightarrow (4). This is obvious.

(4) ⇒(5). It follows by Lemma 4.1 from [21] that $\mathcal{J}nt(\mathcal{C}\ell(S)) \subset s\mathcal{C}\ell(S)$ for every subset *S*. Thus for every closed *N*-closed set K of *Y*, we have

$$\begin{aligned} & \mathcal{J}nt(\mathcal{C}\ell(F^{-}\left(\mathcal{C}\ell\left(\mathcal{J}nt(K)\right)\right))) \subset s\mathcal{C}\ell(F^{-}\left(\mathcal{C}\ell\left(\mathcal{J}nt(K)\right)\right) = \\ & s\mathcal{C}\ell(F^{-}\left(\mathcal{C}\ell\left(\mathcal{J}nt(\mathcal{C}\ell(K)\right)\right)\right) \subset F^{-}(\mathcal{C}\ell(K)) = F^{-}(K). \end{aligned}$$

 $(5) \Rightarrow (6)$. Let V be any open set of Y having N-closed complement; then Y-V is closed N-closed in Y and by (5) we have

$$\mathcal{J}nt(\mathcal{C}\ell(\mathcal{J}nt(Y-V))) \subset F^{-}(Y-V) = X \cdot (F^{+}(V).$$

Moreover, we have

$$\begin{aligned} & \mathcal{J}nt(\mathcal{C}\ell(F^{-}(\mathcal{J}nt(Y - V))) = \mathcal{J}nt(\mathcal{C}\ell(F^{-}(Y - \mathcal{J}nt(\mathcal{C}\ell(V)))) = \mathcal{J}nt(\mathcal{C}\ell(X - (F^{+}(S\mathcal{C}\ell(V)))) = X - \mathcal{C}\ell(\mathcal{J}nt(F^{+}(s\mathcal{C}\ell(V)))). \end{aligned}$$

Therefore, we obtain $(F^+(V) \subset C\ell(Jnt(F^+(SC\ell(V)))))$.

(6)⇒(1). Let x be any point of X and V be any open set having N-closed complement such that $F(x) \subset V$.

Then $x \in (F^+(V) \subset C\ell(\mathcal{J}nt(F^+(sC\ell(V)))))$. Let U be any open set containing x. Then $G=U \cup \mathcal{J}nt(F^+(sC\ell(V))) \neq \phi$, hence G is an non-empty open set contained in U with $F(G) \subset sC\ell(V) = \mathcal{J}nt(C\ell(V))$.

By Theorem 2 (2) F is u.a.n.c.

Theorem 4. For a multifunction $F: (X, \tau) \to (Y, \sigma)$ the following properties are equivalent:

- (1) F is l.a.n.q.c.;
- (2) $F^{-}(V) \subset s \operatorname{Jnt}(F^{-}(sC\ell(V)))$ for every open set *V* having *N*-closed complement;

(3) $sC\ell(F^+(C\ell(Jnt(K))) \subset F^+(K) \text{ for every closed } N\text{-closed set } K \text{ of } Y;$

- (4) $sC\ell(F^+(C\ell(\mathcal{J}nt(C\ell(B)))) \subset (F^+(C\ell(B)))$ for every subset B of Y having N-closed closure;
- (5) $\mathcal{J}nt(\mathcal{C}\ell((F^+(\mathcal{C}\ell(\mathcal{J}nt(K)))) \subset F^+(K) \text{ for every closed } N\text{-closed set } K \text{ of } Y;$
- (6) $F^{-}(V) \subset C\ell(Jnt(F^{-}(SC\ell(V))))$ for every set V having N-closed complement.

Proof. The proof is similar to the proof of Theorem 3.

Theorem 5. For a multifunction $F: (X, \tau) \to (Y, \sigma)$ the following properties are equivalent:

- (1) F is u.a.n.q.c.;
- (2) $sC\ell(F^+(V)) \subset F^-(C\ell(V))$ for every β -open set *V* of *Y* having *N*-closed closure;
- (3) $sC\ell(F^{-}(V)) \subset F^{-}(C\ell(V))$ for every semi-open set *V* of *Y* having *N*-closed closure;
- (4) $F^+(V) \subset s \operatorname{Jnt}(F^+\operatorname{Jnt}(C\ell(V))))$ for every preopen set V of Y having N-closed complement.

Proof. (1) \Rightarrow (2). Let V be any β -open set of Y having N-closed closure. It follows by Theorem 2.4 from [3] that $\mathcal{C}\ell(V)$ is regular closed. Since F is u.a.n.q.c. and $\mathcal{C}\ell(V)$ is regular closed N-closed, by Theorem 2(5) it follows that $F^-(\mathcal{C}\ell(V))$ is semi-closed, hence $s\mathcal{C}\ell(F^-(V))=$

 $F^-(\mathcal{C}\ell(V))$. Therefore, $s\mathcal{C}\ell(F^-(V)) \subset s\mathcal{C}\ell(F^-(\mathcal{C}\ell(V)) = F^-(\mathcal{C}\ell(V))$, hence $s\mathcal{C}\ell(F^-(V)) \subset F^-(\mathcal{C}\ell(V))$.

(2) \Rightarrow (3). The proof is obvious since every semi-open set is β -open.

(3) ⇒(1). Let K be any regular closed N-closed set of Y. Then K is semi-open set having N-closed closure and hence $sC\ell(F^{-}(K)) \subset F^{-}(C\ell(K)) = F^{-}(K)$. Therefore $sC\ell(F^{-}(K)) = F^{-}(K)$.

By Lemma 2, $F^{-}(K)$ is semi-closed set and by Theorem 2.(5) F is u.a.n.q.c.

(1) \Rightarrow (4). Let V be any preopen set having N-closed complement.

By Lemma 1, $\mathcal{J}nt(\mathcal{C}\ell(V))$ is a regular open set having *N*-closed complement. Then by Theorem 2 we have $F^+(V) \subset F^+(\mathcal{J}nt(\mathcal{C}\ell(V))) = s \mathcal{J}nt(F^+(\mathcal{C}\ell(V)))$ because $F^+(\mathcal{J}nt(\mathcal{C}\ell(V)))$ is semi-open.

(4)⇒ (1). Let V be any regular open set having N-closed complement. Then V is preopen having N-closed complement and hence $F^+(V) \subset s \mathcal{J}nt(F^+(\mathcal{I}nt(\mathcal{Cl}(V)))) = s \mathcal{J}nt(V)$. Hence $F^+(V) = s \mathcal{J}nt(F^+(V))$ and $F^+(V)$ is semi-open. By Theorem 2.1 F is u.a.n.q.c.

Theorem 6. For a multifunction $F: (X, \tau) \to (Y, \sigma)$ the following properties are equivalente:

- (1) F is l.a.n.q.c.;
- (2) $sC\ell(F^+(C\ell(V))) \subset F^+(C\ell(V))$ for every β -open set *V* of *Y* having *N*-closed closure;
- (3) $sC\ell(F^+(C\ell(V)) \subset F^+(C\ell(V)))$ for every semi-open set having *N*-closed closure;
- (4) $F^{-}(V) \subset s \operatorname{Jnt}(F^{-}(\operatorname{Jnt}(C\ell(V))))$ for every preopen set V of Y having N-closed complement.

Proof. The proof is similar to proof of Theorem 3.3.

Lemma 3 [22]. For a subset V of a topological space the following properties hold:

1. $\alpha C\ell(V) = C\ell(V)$ for every β -open set *V* of *Y*;

2. $p C\ell(V) = C\ell(V)$ for every semi-open set V of Y.

Corollary 1. For a multifunction $F: (X, \tau) \to (Y, \sigma)$ the following properties holds:

- 1. F is a u.a.n.q.c.;
- 2. $(SC\ell(F^{-}(V)) \subset F^{-}(\alpha C\ell(V)))$ for every β -open set *V* of *Y* having *N*-closed closure;
- 3. $SC\ell(F^{-}(V)) \subset F^{-}(pC\ell(V))$ for every semi-open set V having N-closed closure.

Corollary 2. For a multifunction $F: (X, \tau) \to (Y, \sigma)$ the following properties are equivalent:

- 1. F is l.a.n.q.c.;
- 2. $sC\ell(F^+(V)) \subset F^+(C\ell(V))$ for every β -open set *V* of *Y* having *N*-closed closure;
- 3. $sC\ell(F^+(V)) \subset F^+(pC\ell(V))$ for every semi-open set *V* of *Y* having *N*-closed closure.

Theorem 7. For a multifunction $F: (X, \tau) \to (Y, \sigma)$ the following properties are equivalent:

- (1) F is u.a.n.q.c.;
- (2) $sC\ell(F^{-}(C\ell(\mathcal{J}nt(C\ell_{\delta}(B))))) \subset F^{-}(C\ell_{\delta}(B))$ for every subset *B* of *Y* with $C\ell_{\delta}(B)$ *N*-closed;
- (3) $sC\ell(F^{-}(C\ell(Jnt(C\ell (B))))) \subset F^{-}(C\ell_{\delta}(B))$ for every subset *B* of *Y* with $C\ell_{\delta}(B)$ *N*-closed;

Proof.(1) \Rightarrow (2). Let *B* be any subset of *Y* with $C\ell_{\delta}(B)$ *N*-closed.

By Lemma 2 from [27], $C\ell_{\delta}(B)$ is closed. Since $C\ell_{\delta}(B)$ is closed and N-closed then by Theorem 3, $SC\ell(F^{-}(C\ell(\mathcal{J}nt(C\ell(B)))) \subset F^{-}(C\ell(B)).$

(2) \Rightarrow (3). This is obvious since $C\ell$ (B) $\subset F^-C\ell_{\delta}(B)$.

(3) ⇒(1). Let *K* be a regular closed *N*-closed set of *Y*; then by (3) and Theorem 2 from [11] we have $sC\ell(F^{-}(K)) = sC\ell(F^{-}(C\ell(Jnt(K))) = sC\ell(C\ell(Jnt(C\ell(K)))) \subset F^{-}(C\ell_{\delta}(K)) = F^{-}(K)$.

Hence $F^{-}(K) = sC\ell(F^{-}(K))$. By Lemma 2 $F^{-}(K)$ is semi-closed set.

By Theorem 2 F is u.a.n.q.c..

Theorem 8. For a multifunction $F: (X, \tau) \to (Y, \sigma)$ the following properties are equivalent:

- (1) F is l.a.n.q.c.;
- (2) $sC\ell(F^+(C\ell(\mathcal{J}nt(C\ell_{\delta}(B)))) \subset F^+(C\ell_{\delta}(B))$ for every subset *B* of *Y* with $C\ell_{\delta}(B)$ *N*-closed;
- (3) $sC\ell(F^+(C\ell(\mathcal{J}nt(C\ell (B)))) \subset F^+ (C\ell_{\delta}(B))$ for every subset B of Y with $C\ell_{\delta}(B)$ N-closed;

Proof. The proof is similar to the proof of Theorem 7.

Definition 9. The subset A of a topological space (X,τ) is said to be:

- (1) α -regular [12] if for each $a \in A$ and each open set U containing a, there exists an open G of X such that $a \in G \subset C\ell(G) \subset U$;
- (2) α -paracompact [28] if every X-open of A has an X-open refinement which covers A and is locally finite for each point of X.

Lemma 4 ([23]). If A is an α -regular α -paracompact subset of a topological space (X,τ) and U is an open neighborhood of A, then there exists an open set G of X such that $A \subset G \subset \mathcal{C}\ell(G) \subset U$.

For a multifunction $F: (X, \tau) \to (Y, \sigma)$ by $C\ell(F)$ [5]: $(X, \tau) \to (Y, \sigma)$ /5/ we denote a multifunction defined as follows:

 $\mathcal{C}\ell(F)(x) = \mathcal{C}\ell(F(x))$ for each $x \in X$.

Similary, we denote $s\mathcal{C}\ell(F)$: $(X,\tau) \to (Y,\sigma)$, $p\mathcal{C}\ell(F)$: $(X,\tau) \to (Y,\sigma)$, $\alpha \mathcal{C}\ell(F)$: $(X,\tau) \to (Y,\sigma)$, $b\mathcal{C}\ell(F)$: $(X,\tau) \to (Y,\sigma)$, $\beta \mathcal{C}\ell(F)$: $(X,\tau) \to (Y,\sigma)$.

Lemma 5. If $F: (X, \tau) \to (Y, \sigma)$ is a multifunction such that F(x) is α -regular and α paracompact for each $x \in X$, then $G^+(V) = F^+(V)$ for every regular open set V of Y when G
denotes $C\ell(F)$, $sC\ell(F)$, $pC\ell(F)$, $\alpha C\ell(F)$, $bC\ell(F)$, $\beta C\ell(F)$.

Proof. Let V any regular open set of Y and $x \in G^+(V)$.

Then $G(x) \subset V$ and $F(x) \subset G(x) \subset V$. We have $x \in F^+(V)$ and hence $G^+(V) \subset F^+(V)$. Conversely, let $x \in F^+(V)$. Then we have $F(x) - \subset V$ and by Lemma 4 there exists an open set *H* of *Y* such that $F(x) \subset H \subset C\ell(H) \subset V$. Since $G(x) \subset C\ell(F(x))$, $G(x) - \subset V$ and hence $x \in G^+(V)$. Thus we obtain $F^+(V) \subset G^+(V)$. Therefore, $G^+(V) = F^+(V)$.

Lemma 6. For a multifunction $F: (X, \tau) \to (Y, \sigma), G^-(V) = F^-(V)$ for each regular open set of *Y*, where *G* denotes $\mathcal{C}\ell(F)$, $s\mathcal{C}\ell(F)$, $p \mathcal{C}\ell(F)$, $\alpha \mathcal{C}\ell(F)$, $b \mathcal{C}\ell(F)$.

Proof. Let V be any regular open set V of Y and $x \in G^-(V)$.

Then $G(x) \cap V \neq \phi$ and hence $F(x) \cap V \neq \phi$ since V is open. We have $x \in F^-(V)$ and hence $G^-(V) \subset F^-(V)$. Conversely, let $x \in F^-(V)$. Then we have $\phi \neq F(x) \cap V \subset G(x) \cap V$ and hence $x \in G^+(V)$. Thus we obtain $F^-(G) \subset G^-(V)$. Therefore, $F^-(V) = G^-(V)$.

Theorem 9. Let $F : (X, \tau) \to (Y, \sigma)$ be a multifunction such that F(x) is α -regular and α -paracompact for each point $x \in X$.

Then the following properties are equivalent.

- (1) F is u.a.n.q.c.;
- (2) $sC\ell(F)$ is u.a.n.q.c;
- (3) $p C\ell(F)$ is u.a.n.q.c.;
- (4) $\alpha C\ell(F)$ is u.a.n.q.c.;

- (5) b $C\ell(F)$ is u.a.n.q.c.;
- (6) $C\ell(F)$ is u.a.n.q.c.;
- (7) $\beta C \ell(F)$ is u.a.n.q.c..

Proof. We set $G = C\ell(F)$, s $C\ell(F)$, p $C\ell(F)$, $\alpha C\ell(F)$, b $C\ell(F)$, $\beta C\ell(F)$.

Assuming that F is u.a.n.q.c.. Let V any regular open set of Y containing G(x) and having N-closed complement.

Then Theorem 2 and Lemma 5 demonstrate that $G^+(V)=F^+(V) \subset SO(X)$. By Theorem 2 G is u.a.n.q.c..

Conversely, supposing that G is u.a.n.q.c.. Let V any regular open set of Y containing F(x) and having connected complement. Then it follows by Theorem 2 and Lemma 5 that $F^+(V) = G^+(V) \in SO(X)$. By Theorem 2 F is u.a.n.q.c..

Theorem 10. For a multifunction $F : (X, \tau) \to (Y, \sigma)$ the following properties are equivalent:

- (1) is l.a.n.q.c.;
- (2) $C\ell(F)$ is l.a.n.q.c.;
- (3) (3) s*Cl*(F) is l.a.n.q.c;
- (4) $p C\ell(F)$ is l.a.n.q.c.;
- (5) $\alpha C\ell(F)$ is l.a.n.q.c.;
- (6) b $C\ell(F)$ is l.a.n.q.c.;
- (7) $\beta C \ell(F)$ is l.a.n.q.c..

Proof. The proof is similar to the proof of Theorem 9.

Theorem 11. Let (X, τ) be a topological space and $\{U_i : i \in I\}$ a cover of X by α -open sets of (X, τ) . A multifunction $F : (X, \tau) \to (Y, \sigma)$ is u.a.n.q.c. if and if the restriction $F_{|U_i} \to Y$ is u.a.n.q.c. for each $i \in I$.

Proof. Necessity. Suppose that *F* is u.a.n.q.c.. Let $i \in I$ and $x \in U_i$ and *V* be any regular open set of *Y* containing $(F_{|U_i|}(x))$ and having *N*-closed complement. Since *F* is u.a.n.q.c. and $(F_{|U_i|}(x)) = F(x)$, by Lemma 2 there exists $U_o \in SO(X, x)$ such that $F(U_o) \subset V$. Let $U=U_o \cap U_i$. Then by Lemma 2 [20] we have $U \in SO(U_i, x)$ and $(F_{|U_i|})(U) \subset V$. It follows from Theorem 2 that $F_{|U_i|}$ is u.a.n.q.c..

Sufficiency. Let $x \in X$ and V be any regular open set containing F(x) and having N-closed complement. There exists $i \in I$ such that $x \in U_i$ and $(F_{|U_i})(x) = F(x) \subset V$. Since $F_{|U_i}$ is u.a.n.q.c., there exists $U \in SO(U_i, x)$ such that $(F_{|U_i})(U) \subset V$. Since $U_i \in \alpha(X)$, it follows from Theorem 2 and Theorem 1 of [18] that $U \in SO(X, x)$. Moreover, we have $F(U) \subset V$.

Theorem 12. Let (X, τ) be a topological space and $\{U_i : i \in I\}$ a cover of X by α –open sets of (X, τ) . A multifunction $F : (X, \tau) \to (Y, \sigma)$ is l.a.n.q.c. if and only if the restriction $F_{|U_i} \to Y$ is l.a.n.q.c. for each $.i \in I$.

Proof. The proof is similar to proof of Theorem 5.

26

References

- 1. Abd El-Monsef, M.E, El-Deeb, S.N., Mahmoud, R.A β-open sets and βcontinuous mappings, *Bulletin Faculty Sciences Assint University*. 12, pp. 77-90, 1983
- Abd El-Monsef, M.E., Mahmoud, R.A., Lashin, E.R. β-closure and β-interior, Journal Faculty Education Ain Shams University, 10(1986), pp. 235-245, 1986
- 3. Andrijević, D. Semi-preopen sets, Matematik Vesnik 38(1986), pp. 24-32, 1986
- 4. Andrijević, D. On b-open sets, Matematik Vesnik 48(1996), pp. 59-64, 1996
- Bânzaru, T. Multifunction and M-product spaces (Romanian), Buletin Ştiinţe, Tehnică, Institutul Politehnic "Traian Vuia"-Timişoara, Matematică, Teorie, Aplicații, 17 (1972), pp. 17-23, 1972
- Carnahan, D.-Locally nearly-compact spaces, Bolletin Unione Matematica Italiana, (4) 6 (1972), pp. 146-153, 1972
- 7. Crossley, S.G., Hildebrand, S.K. Semi-closure, *Texas Journal Sciences*, 22(1971), pp. 99-112, 1971
- 8. Ekici, E. Nearly continuous multifunctions, Acta Mathematica Universitas Comeniance Bratislava, 73, 2(2003), pp. 229-235, 2003
- 9. Ekici, E. Almost nearly continuous multifunctions, *Acta Mathematica Universitas Comeniance*, 73, 2(2004), pp. 175-186, 2004
- El-Deeb, N., Hasanein, I.A., Mashhour, A.S., Noiri, T. On p-regular spaces, Bulletin Mathematique Société Sciences Mathématiques, R.S. Roumanie, 27(75)(1983), pp. 311-315, 1983
- Joseph, J.E. On characterization of nearly compact spaces, *Bolletin Unione Mathematica Italiana*, (5), B-13(1976), pp. 311-321, 1976
- 12. Kovacevic, I. Subsets and paracompactness, Universita u Novum Sadu, Zb. Rad. Privod, Matematica Fizica, Series Matematica, 14(1984), pp. 79-87,1984
- 13. Levine, N. Semi-open sets and semi-continuity in topological space, *American Mathematical Monthly*, 70(1963), pp. 36-41, *Harvard Business Review* 71(4), 1993
- 14. Malghan, A.R., Hanchina, V.V. N-continuous functions, Annales Société Sciences Bruxelles, 98(1984), pp. 69-79, 1984
- Mashhour, A.S., Abd El-Monsef, M.E., El-Deeb, S.N. On precontinuous and weak precontinuous mappings, *Proceeding Mathematics Physics Society Egypt*, 53 (1982), pp. 47-53, 1982
- 16. Mashhour, A.S., Hasanein, I.A., El-Deeb, S.N.-α-continuous and α-open mappings, *Acta Mathematica. Hungarica*, 41(1993), pp. 213-218, 1993
- 17. Njastad, O. On some classes of nearly open sets, *Pacific Journal Mathematics*, 15 (1965), pp. 961-970, 1965
- Noiri, T. On semi-continuous mappings, Academiae Nazionale Lincei Rediconti Sciensis. Fizica, Matematica, Natura, 8 (54) (1973), pp. 210-214, 1973
- Noiri, T. N closed sets and some separation axioms, Annales Société Sciences Bruxelles, 88(1974), pp. 159-199, 1974
- Noiri, T. On S-closed subspaces, Academiae Nazionale Lincei Rediconti Sciensis. Fizica, Matematica, Natura, (8) 64 (1978), pp. 157-162, 1978
- Noiri, T. On α-continuous functions, Cašopis Pest. Mathematica, 109(1984), pp. 118-126, 1984
- 22. Noiri, T. Almost quasi continuous functions, *Bulletin of the Institute of Mathematics* Academica Sinica, 18(1990), pp. 321-332, 1990
- Noiri, T., Ergun, N. Notes on N-continuous functions, Research Report Tatsushiro National College Technology 11, pp. 65-68, 1991
- 24. Popa, V. Almost continuous multifunctions, Matematik Vesnik, 6(9)(34), pp. 75-84, 1992
- Popa, V., Noiri, T. On upper and lower almost quasi-continuous multifunctio, Bulletin of the Institute of Mathematics Academica Sinica, 21, 4(1993), pp. 337-349, 1993
- 26. Rychlewicz, A. On almost nearly continuity with reference to multifunctions, *Submited Acta Mathematica Universitas Comeniance*, 2005
- 27. Velićko, N.N. H-closed topological spaces, American Mathematical Society Translations, 78(1968), pp. 103-118, 1968
- Wine, J.D. Locally paracompact spaces, *Glasnik Mathematic*, 10 (30) (1975), pp. 351-357, 1975

Unele caracterizări ale multifuncțiilor superior/inferior aproape continue

Rezumat

În lucrarea [24], Rychlewicz a introdus noțiunea de multifuncție superior/inferior aproape cvasicontinuă ca o generalizare a noțiunii de multifuncție superior/inferior aproape continuă [23] și a noțiunii de multifuncție superior/inferior aproape continuă [9]. Scopul lucrării noastre este de a obține noi teoreme de caracterizare a multifuncțiilor superior/inferior aproape continue.